Entropy and its variational principle for noncompact metric spaces
نویسنده
چکیده
In the present paper, we introduce a natural extension of AKMtopological entropy for noncompact spaces and prove a variational principle which states that the topological entropy, the supremum of the measure theoretical entropies and the minimum of the metric theoretical entropies always coincide. We apply the variational principle to show that the topological entropy of automorphisms of simply connected nilpotent Lie groups always vanishes. This shows that the classical formula for the entropy of an automorphism of a noncompact Lie group is just an upper bound for its topological entropy. AMS 2000 subject classification: Primary: 37B40 37A35, Secondary: 22E25.
منابع مشابه
Localized Variational Principle for Non-besicovitch Metric Spaces
We consider the localized entropy of a point w ∈ R which is computed by considering only those (n, ε)-separated sets whose statistical sums with respect to an m-dimensional potential Φ are ”close” to a given value w. Previously, a local version of the variational principle was established for systems on non-Besicovitch compact metric spaces. We extend this result to all compact metric spaces.
متن کاملA Thermodynamic Definition of Topological Pressure for Non-compact Sets
We give a new definition of topological pressure for arbitrary (noncompact, non-invariant) Borel subsets of metric spaces. This new quantity is defined via a suitable variational principle, leading to an alternative definition of an equilibrium state. We study the properties of this new quantity and compare it with existing notions of topological pressure. We are particularly interested in the ...
متن کاملOn the Monotone Mappings in CAT(0) Spaces
In this paper, we first introduce a monotone mapping and its resolvent in general metric spaces.Then, we give two new iterative methods by combining the resolvent method with Halpern's iterative method and viscosity approximation method for finding a fixed point of monotone mappings and a solution of variational inequalities. We prove convergence theorems of the proposed iterations in ...
متن کاملEntropy of a semigroup of maps from a set-valued view
In this paper, we introduce a new entropy-like invariant, named Hausdorff metric entropy, for finitely generated semigroups acting on compact metric spaces from a set-valued view and study its properties. We establish the relation between Hausdorff metric entropy and topological entropy of a semigroup defined by Bis. Some examples with positive or zero Hausdorff metric entropy are given. Moreov...
متن کاملThe variational principle of fixed point theorems in certain fuzzy topological spaces
General topology can be regarded as a special case of fuzzy topology where all membership functions in question take values 0 and 1 only. The usual fuzzy metric spaces, fuzzy Hausdorff topological vector spaces, and Menger probabilistic metric spaces are all the special cases of F-type fuzzy topological spaces. Therefore, one would expect weaker results in the case of fuzzy topology. Recently s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008